Newsroom

Newsroom

Research News

  • Researchers Develop Efficient Method to Prepare Silicon Nanowires Electrodes from Photovoltaic Silicon Waste

    Photovoltaic power generation is promising in providing clean energy. However, in the process of manufacturing silicon (Si) wafers, high-purity Si that accounts for about 40% of the total mass of Si ingots is lost during the wire sawing process, leading to waste of secondary resources and environmental pollution.

    The preparation of lithium-ion battery anodes from photovoltaic Si waste can realize green, synergistic and sustainable development of photovoltaic and lithium battery industries.

    Recently, Prof. WANG Zhi's group from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences developed a controllable electrothermal shock method to realize catalyst-free, one-step efficient preparation of high Si-content nanowire electrodes from photovoltaic Si waste (WSi). It provides a new idea for the efficient and low-cost preparation of Si nanowire materials for lithium-ion batteries (LIBs).

    The study was published in Advanced Energy Materials on September 1 (DOI:10.1002/aenm.202102103).

    In the proposed method, photovoltaic WSi is converted to high energy-density and stable Si nanowires (SiNWs) electrodes for LIBs in milliseconds. The flash heating and quenching provided by an electrothermal shock drive directional diffusion of Si atoms to form SiNWs within the confined space between graphene oxide films.

    The researchers found that when applied as a binder-free anode for LIBs, the SiNWs@RGO electrode exhibited an ultra-high initial Coulombic efficiency (89.5%) and robust cycle stability (2381.7 mAh g-1 at 1 A g-1 for more 500 cycles) at high Si content of 76%.

    Electrothermal shock synthesis of silicon nanowires and their performance (Image by IPE)

    In recent years, Prof. WANG Zhi's group has developed a number of characteristic technologies and equipment for high-value recycling of photovoltaic Si waste, and established a demonstration project of short-range high-value recycling of 10,000-ton Si -based solid waste.

    This work was supported by the National Key R&D Program of China and the National Natural Science Foundation of China.


    Media Contact:
    LI Xiangyu
    Public Information Officer
    Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
    E-mail: 
    xiangyuli@ipe.ac.cn
    Tel: 86-10-82544826 

    附件下载

    Recommended Articles
    Particulate Alum Pickering Emulsion as Adjuvant May Enhance Performance of SARS-CoV-2 Vaccine
    Particulate Alum Pickering Emulsion as Adjuvant May Enhance Performance of SARS-CoV-2 Vaccine
    Sep 04,2020
    Researchers developed a novel strategy for adjuvant based on particulate Alum Pickering emulsion, which enhances the performance of SARS-CoV-2 vaccine.
    Researchers Develop High-performance Cancer Vaccine Using Novel Microcapsules
    May 23,2020
    Scientists from IPE have developed a new therapeutic tumor vaccine based on self-healing polylactic acid microcapsules, which can efficiently activate the immune system and inhibit tumor development.

    CONTACT US

    • CONTACT US 86-10-82544817
    • CONTACT US 62551257
    • CONTACT US ghb@ipe.ac.cn
    • CONTACT US Institute of Process Engineering,Chinese Academy of Sciences,1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, PR China