Newsroom

Newsroom

Research News

  • Complexation with Cyclodextrin Improves Solubility of Cannabidiol

    Recently, a research group from the Institute of Process Engineering (IPE) of the Chinese Academy of Sciences prepared the inclusion complexes (ICs) with cyclodextrin for improving the solubility of cannabidiol (CBD), which in turn can enhance the bioavailability of CBD.

    The study was published in Journal of Molecular Liquids on April 8 (DOI: 10.1016/j.molliq.2021.116070).

    CBD has a wide variety of biological activities, and it is one of the phytocannabinoids from Cannabis sativa L (Hemp). However, due to the poor aqueous solubility, its applications in food, cosmetic, and pharmaceutical fields are limited.

    Cyclodextrins (CDs) are useful materials to improve the solubility of poorly water-soluble molecules. Therefore, the researchers used β-cyclodextrin (β-CD) and 2, 6-di-O-methyl-β-cyclodextrin (DM-β-CD) to prepare CBD/β-CD IC and CBD/DM-β-CD IC by freeze-drying method to improve the water solubility and dissolution rate of CBD.

    Moreover, the results of molecular docking further showed that CBD was encapsulated successfully.

    Job’s plot and phase solubility study revealed that CBD formed ICs with β-CD and DM-β-CD at a stoichiometric ratio of 1:1. The thermodynamics analysis demonstrated that the inclusion process was spontaneous and endothermic. The loading efficiency (LE) of CBD/β-CD IC and CBD/DM-β-CD IC was 20.4% and 17.7%, respectively, while the complexation efficiency (CE) was 92.4% and 90.8% respectively.

    Moreover, the water solubility of CBD in CBD/β-CD IC and CBD/DM-β-CD IC was significantly increased to 0.395 and 14.118 μg/mL, which was enhanced by 17-fold and 614-fold respectively at such a high LE, and the in vitro dissolution rate of CBD was also promoted.

    The antioxidant activity of CBD was improved after encapsulation. Significantly, the ABTS free radical scavenging ability of the ICs was better than that of Vitamin C.

    A peer reviewer from Journal of Molecular Liquids said the study was “well organized and described the concept of complexation very well”.

    The researchers hoped that this work could provide theoretical and experimental support for expanding the application of cannabidiol.

    Media Contact:
    LI Xiangyu
    Public Information Officer
    Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China.
    E-mail:
    xiangyuli@ipe.ac.cn
    Tel: 86-10-82544826 

    附件下载

    Recommended Articles
    Summer Science Show
    Summer Science Show
    May 24,2024
    On May 18, many parents and their children visited the institute to engage in the Summer Science Show. This included exploring key laboratories, participating in interactive science classes, conducting hands-on science experiments, and visiting th...
    Researchers Develop a Novel Dry-powder Inhaled Vaccine Platform
    Dec 14,2023
    Researchers from IPE have proposed a new nanomicro composite delivery concept and developed a single-dose dry powder inhalable vaccine platform with a nanomicro composite multilevel structure against the future emerging and epidemic infectious dis...

    CONTACT US

    • CONTACT US 86-10-82544817
    • CONTACT US 62551257
    • CONTACT US ghb@ipe.ac.cn
    • CONTACT US Institute of Process Engineering,Chinese Academy of Sciences,1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, PR China