Newsroom

Newsroom

Headline

  • Scientists Shed Light on Riddle of Sun's Explosive Events

    A computer visualization of the sun (red sphere) and its magnetic field lines (orange and aquamarine). The close-up shows the final stage of the emergence of magnetic fields from under the solar surface and the associated X-ray emissions. This sophisticated computer model is used to investigate the drivers of harmful space weather phenomena, including coronal mass ejections. Credit: Cooper Downs, Predictive Science, Inc.

    A computer visualization of the sun (red sphere) and its magnetic field lines (orange and aquamarine). The close-up shows the final stage of the emergence of magnetic fields from under the solar surface and the associated X-ray emissions. This sophisticated computer model is used to investigate the drivers of harmful space weather phenomena, including coronal mass ejections. Credit: Cooper Downs, Predictive Science, Inc.

    In a paper just published in Nature Physics, an international team of space scientists, including a researcher from the University of New Hampshire's Space Science Center (SSC), explains the mysterious physical mechanisms underlying the origin of CMEs. Their findings, based on state-of-the-art , show the intricate connection between motions in the sun's interior and these eruptions and could lead to better forecasting of hazardous space weather conditions.

    CMEs are clouds of magnetic fields and plasma ­– a hot gas composed of charged particles. The fastest and most powerful of these events can explode from the sun at speeds of more than a million miles per hour and release more energy than the current worldwide stockpile of nuclear weapons.

    "By studying CMEs we learn not only about the drivers of space weather but also about the structure of the atmosphere of the sun and other sun-like stars," says lead author Ilia Roussev of the Yunnan , Chinese Academy of Sciences (CAS) and the Institute for Astronomy at the University of Hawaii at Manoa.

    caused by CMEs can disrupt , satellites that operate global positioning systems and telecommunication networks, pose a threat to astronauts in outer space, lead to rerouting of flights over the polar regions, and cause spectacular auroras. The storms occur when a hits Earth's protective magnetic bubble, or magnetosphere.

    The paper, titled "Explaining fast ejections of plasma and exotic X-ray emission from the ," provides an explanation of the origin of fast ejections of magnetized plasma from the sun's atmosphere and associated X-ray emissions. It thus demonstrates a fundamental connection between the magnetic processes inside the sun's interior and the formation of CMEs.

    "Through this type of computer modeling we are able to understand how invisible bundles of magnetic field rise from under the surface of the sun into interplanetary space and propagate towards Earth with potentially damaging results", says SSC researcher Noé Lugaz of the UNH Institute for the Study of Earth, Oceans, and Space. He adds, "These fundamental phenomena cannot be observed even with the most advanced instruments on board NASA satellites but they can be revealed by numerical simulations."

    A long-standing goal of the solar physics community has been the forecasting of solar eruptions and predictions of their impact on the Earth. In the paper, the authors note, "the model described here enables us not only to capture the magnetic evolution of the CME, but also to calculate the increased X-ray flux directly, which is a significant advantage over the existing models." (Phys.org)

    More information: The Nature Physics paper can be viewed at www.nature.com/nphys/journal/vaop/ncurrent/pdf/nphys2427.pdf

    Journal reference: Nature Physics.

    附件下载

    Recommended Articles
    Summer Science Show
    Summer Science Show
    May 24,2024
    On May 18, many parents and their children visited the institute to engage in the Summer Science Show. This included exploring key laboratories, participating in interactive science classes, conducting hands-on science experiments, and visiting th...
    Researchers Develop a Novel Dry-powder Inhaled Vaccine Platform
    Dec 14,2023
    Researchers from IPE have proposed a new nanomicro composite delivery concept and developed a single-dose dry powder inhalable vaccine platform with a nanomicro composite multilevel structure against the future emerging and epidemic infectious dis...

    CONTACT US

    • CONTACT US 86-10-82544817
    • CONTACT US 62551257
    • CONTACT US ghb@ipe.ac.cn
    • CONTACT US Institute of Process Engineering,Chinese Academy of Sciences,1 North 2nd Street, Zhongguancun, Haidian District, Beijing 100190, PR China