Home | Contact | Sitemap | 中文 | CAS
   
Home News About Us Research People International Cooperation Graduate Education Papers Join Us
  Research
Research Divisions
Research Progress
Achievements
Research Programs
Innovation Groups
Location: Home > Research > Research Progress

Chinese scientists observe IT-advancing phenomenon
Author:
ArticleSource:
Time: 2013-04-12
Close
Text Size: A A A
Print

BEIJING - Chinese scientists have made the very first experimental observation of a phenomenon known as the quantum anomalous Hall (QAH) effect, a discovery that will help accelerate the IT revolution and in developing low-power-consumption electronics.

Yang Zhenning, winner of a Nobel Prize in Physics, said at a press conference on Wednesday that the research was ground-breaking in the field, rating it as worthy of a Nobel Prize.

QAH effect is one of the most important physical effects that had remained unobserved worldwide, according to academic Xue Qikun, who has led a team working on the subject since 2008.

The discovery, if it is harnessed in the future, will help reduce unnecessary energy consumption stemming from irregular electron collisions, according to Xue.

"The technology may even bring about a supercomputer in the shape of an iPad," predicted Xue.

The QAH effect was predicted to occur in magnetic topological insulators by American scientist Edwin Hall more than 130 years ago. It is a kind of quantum Hall effect realized at zero magnetic field.

The quantum Hall effect describes how a voltage appears at both semiconductor edges when the electrons on a current-carrying semiconductor experience a force while being kept in a magnetic field, Xue explained.

The academic said that although leapfrog development has been made in semiconductor technology, the unsettled problem of thermal dissipation caused by irregular movements of electrons has created a bottleneck for the IT industry's further development.

The research, launched by a team of scientists from Tsinghua University and the Institution of Physics under the Chinese Academy of Science, was conducted on more than 1,000 samples at zero magnetic fields.

However, there remains a long way ahead for the observation to be taken into practical application due to limited research resources at present, Xue added.

 
Copyright 2009 by Institute of Process Engineering, Chinese Academy of Sciences, All Right Reserved